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ABSTRACT 

An infinite extension of the elementary theory of Abelian groups is constructed, 
which is proved to be decidable, while the elementary theory of its finite models 
is shown to be undeeidable. Tarski's proof of undecidability for the elementary 
theory of Abelian cancellation semigroups is presented in detail. Szmielew's proof 
oftbe decidability oftbe elementary theory of Abelian groups is used to prove 
the decidability oftbe elementary theory of  finite Abelian groups, and an axiom 
system for this theory is exhibited. It follows that the elementary theory of Abelian 
oa.,~Alation sen~igroups, while und0cidable,has a decidable theory of finite models. 

In this note we shall frequently refer to concepts and results of [12]. Given 
a theory T with standard formalization, we denote by T s the elementary theory 
of all finite models of 7'. Thus T s is an extension of Twith the same non-logical 
constants. 

In all commonly known cases of theories Twith arbitrarily large finite models, 
T and T r are either both decidable or both undecidable. If, for instance, we 
take for Tthe elementary theory of relational structures with one discrete simple 
ordering relation, or with one equivalence relation, or of Boolean algebras, or 
of  Abelian groups, then Tis known to be decidable (see [6], [5], [11], and [8]), 
and it is not difficult to prove that T r is decidable as well. However, we do not 
see in any of these cases an automatic method for deriving the decidability of 
T t from that of 7". In the case of Abelian groups the derivation will be given in 
the proof of Theorem 4 below. If, on the other hand, we take for Tthe first-order 
logic with a given set of non-logical constants (including at least one non-unary 
predicate), i.e., the elementary theory of all relational structures of a given sim- 
ilarity type, or the elementary theory of groups, or of rings, or of distributive 
lattices, then both T and T r have been shown to be undecidable (cf. [12], where 
further references can be found, and [14], [1], [7] and [10]). 

The question naturally arises whether the property of being decidable, or 
undecidable, always carries over from a theory T (with arbitrarily large finite 
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models) to its extension T r. The purpose of this note is to show that the answer 
is negative.(0 

In symbolic notation and terminology we shall, in general, adhere to [12]. 
We shall use, however, ~/ and 3 as the universal and existential quantifiers. 
3nx¢ will serve as the abbreviation of the formula expressing the fact that there 
are exactly n elements x satisfying the formula ¢.  /~<nq)~ and Vi<,,q)~ will res- 
pectively denote the conjunction and the disjunction of the n formulas ~0, . . . ,  ~n- 1. 
We shall also use expressions like /~i ei~i to represent the conjunction of all 
formulas ~i indexed by the elements i of a finite set I (without indicating the 
order in which the formulas @i occur in this conjunction, since the order is ir- 
relevant for our purposes). Given a set X of sentences, we shall denote by I X I 
the set of all disjunctions each term of which is either a sentence of X or the 
negation of such a sentence; by IX] we shall denote the set of all conjunctions 
of members of I X I" N will stand for the set of natural numbers, p,  for the nth 
prime in natural order, and (m, n), as usual, for the greatest common divisor 
of m and n. By mn we shall denote the set of all m-termed sequences 
r = ( r o , . . . , r m _ l )  all terms of which are natural numbers < n, subject to the 
condition that at least one term differs from 0. 

By the phrase "the sentence ¢ is derivable in the theory T from the set S of 
sentences" we mean that • is logically derivable from the set consisting of all 
valid sentences of T and all sentences of S. Similar remarks apply to expressions 
such as " *  is compatible (or incompatible) with S in T, . . . .  • and ~P are compatible 
(or incompatible) in T," or, " ~  and ~P are equivalent in Z "  

We shall be discussing certain theories closely related to the elementary theory 
AG of Abelian groups and therefore present first a brief account of a few per- 
tinent results concerning this theory. 

Theory A G has been thoroughly discussed by Szmielew in I-8-[. Since we shall 
frequently refer to [8], it should be pointed out that our symbolism deviates 
in some respects from that of [8]. In particular we use the multiplicative notation 
instead of the additive one. Thus we assume A G to be provided with the binary 
operation symbol • and the individual constant 1 as the only non-logical con- 
stants(2). For any term ~ in the symbolism of A G  and any n e N  the symbolic 
expression ,n will have its usual meaning. 

One of the main results of [8] (cf. p. 269f.) is a proof of the decidability of 
A G. The method of proof can roughly be described as follows. A certain recursive 

(0 This paper was prepared for publication while the author was working at the University 
of California on a research project in the foundations of mathematics sponsored by the U.S. 
National Science Foundation, Grant G19673. The main results were first stated (without proof) 
in [3]. For some related results see [4]. 

(2) Regarding the difference in use between symbols printed in bold and in ordinary type 
(e.g.,between" and • , or -- and =) see [12], p. 42. 
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set B of  so-called basic sentences is singled out, it is proved that every sentence 
in the formalism of AG is equivalent to a sentence of [B](S); and finally a de- 
cision procedure for IB] is established, i.e., it is shown that the set of all sentences 
of  [B] which are provable in A G is recursive. (What is actually discussed in [8] 
is not a set B of basic sentences, but the corresponding model-theoretic notion, 
the set C of basic arithmetical classes. While according to our conventions [B[ 
denotes the set of  finite disjunctions of basic sentences and their negations, I C I 
is the set of  all finite unions of finite intersections--or, equivalently, of all finite 
intersections of finite unions--of  basic arithmetical classes and their complements. 
Thus I C[ is the model theoretic object which exactlycorrespondsto our set [B].) 

In [8] the following sentences K(m) and R~(q , k ,m) ,  where m and k are 
arbitrary positive integers, q is an arbitrary prime, and i = 1,2,3, are chosen 
as basie sentences: 

K(m) = Vx(x ~' = 1), 

Rtl)(q,k,m) = 3Xo ... 3xm_l[A,,m~ ,-~(x~ ~-1'° ..... Xm_~ ~-1'm-1 = 1) 

A = 1 ) ] ,  

RC2)(q,k,m) = 3x 0... 3Xm_l[A,e, ,  q Vx~, 

~ . . . . .  

R(S~(q,k,m) = 3Xo... 3Xm_l [Arem~ Vxm 

~ = k) A A <m(X? = 1 ) ] .  

We find it more convenient for our purposes to use as basic sentences, instead 
of  K ( m ) a n d  R°)(q,k,m),  the following closely related sentences H(m) and 

Q(O(q, k, n), where m, i, q, and k are as before and n is an arbitrary natural number, 
H(1) = K(A1), 
H(m + 1) = [K(rn + 1) A ~ K ( i ) ] ,  

Q(O(q, k,O) = N R(O(q, k, 1), 
Q(O(q, k, m) = [ ~ R(°(q, k, m + 1) A R(~)(q, k, m)]. 

(3) It is a widespread belief that, to justify the argument just described, it is necessary to 
knowthat every sentence in the formalism oftbe theory AG is effectively equivalent, and not just 
equivalent,to a sentence of [B]. It was pointed out by Tarski, however, that this is superfluous. 
In fact he formulated the following general theorem: Assume that (i) T is an axiomatizable theory 
and S is the set o f a l l  sentences in the formalism of  T, (ii) S' is a recursively enumerable subset o f  S, 
and (iii) the set o f a l l  those sentences orS ~ that are valid in T is recursive. If ,  under these assumptions, 
every sentence o f  S is equivalent in T to a sentence o r s  ~, then T is decidable, i.e., the set o f  all 
sentences o f  S that are valid in T is recursive. This generalises the well known theorem by which 
every complete axiomatizablo theory is decidable (see [12] p. 14) and implies, e.g., that every 
axiomatizable theory which has only finitely many complete extensions is also decidable. 

In connection with this theorem of  Tarski we remark that it is an immediate consequence of 
the following principle: If, under the assumptions (i) and (ii), every sentence of  S is equivalent in T 
to some sentence orS',  then this equivalence relation is effective in the sense that there is a recursive 
function which correlates with every sentence of  S an equivalent sentences o f  S". The proofs of 
both thes~ observations arv obvious. 
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Henceforth we shall denote by B the set of all sentences H(m) and Q°)(q,k,n). 
Since every basic sentence of [8] is logically equivalent to a sentence of [B] we 
have as in [8], p. 270, 

(.) Every sentence in the formalism of AG is equivalent in AG to a sentence. 
of [B]. 

This result will play a basic role in the proofs of Theorems 1 and 4. 
The decision procedure for the set [B] has not been presented in [8] with any 

details. We shall now give the details that are needed for our further discussion. 
Obviously a conjunction of sentences is provable if and only if every one of 

its conjuncts is provable. Hence the decision problem for the whole set [B] re- 
duces to that for [ B [. Thus we have to present a method that permits us to show 
for each particular sentence q~ of [B[, either that • is provable in AG or else 
that ~ • has an Abelian group as a model. It turns out that such models can 
always be found among finite direct products of the following basic Ableian 
groups: 

~Rq, 

~qb, 

the additive group of all rationals of the form n/m with ( m , q ) - 1 ,  
the group of all rationals of the form n /q ~ with addition modulo 1 
as the group operation, 
the group of all rationalsofthe form n/q h with addition modulo 1 as 
the group operation, 

"3, the trivial group, 

where q is an arbitrary prime and h an arbitrary positive integer. We shall call 
a q-model of a sentence gP if and only i f ~  is a model of O and is either a direct 

product of finitely many groups ~R~, if,h, or a direct product of finitely many 
groups ffq, ~o ,  i.e., if ~0~ is a q-model, then ~[R = ~.ff~(a, n, !") for g = 0 or 1, some 
. E N and some l(r)-termed finite sequence r of natural numbers, where 

We shall, for any group 9~, identify 9i ° with ,3. The set of all basic sentences 
Q~t)(q,k,n) with fixed q will be denoted by Q~. Unless stated otherwise, q will 
range over primes, i over 1,2,3, n over N,  and k,h,m over positive integers. 
We now present some lcmmas, which are needed for the proofs of Theorems 1 
and 4 and which yield a decision procedure ibr [B[. 

LEMMA 1. For any i, q, k, n, n', m and re'for which n' # n, m' # m and 
(re,q) = 1, the following are theorems of AG : 

O) Q")(q,k,n)-.-, ,,, Q")(q,k,n'), 

(ii) H(m) --. ~ H(m'),  
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(iii) Qtl~(q,k,n) ~ V~,(Q°~(q,k + 1,j) A Q°~(q,k,n - j)), 

(iv) Qt2)(q,k,n) ~ Vl~_~(Qt')(q,k + 1,j) A Qt3)(q,k,n - i)), 

(v) H(m) -~ Q(O(q,l,O), 

(vi) H(qkm) --, Qtt)(q,k + 1,0) A Qt2~(q,k + 1,0) A ~ Qta)(q,k,O). 

This lemma is easily verified on the basis of well known properties of Abelian 
groups. Parts (iii) and (iv) are consequences of Theorem 1.7, p. 216, of  [8], where 
the expression pti~(q,k)92=n is to be interpreted as "92[ is a model of 
~O(q, k, n)." Parts (i) and (ii), by the way, motivate our choice of  basic sentences. 
The next lemma is an immediate consequence of our definitions and can be found 
in 18] as Theorem 1.9, p. 219. Because of Lemma 1 (i) and (ii), it lists all the basic 
sentences of which any given basic group is a model. 

LEMMA 2. For any two distinct primes q and q' the following table indi- 
cates for what values of i, k and m the basic groups listed in the first row are 
models of the basis sentences listed in the first column. 

3 

Otl~(q,k,O) any k any k 

Qt2)(q,k,O) no k any k 

Qta)(q,k,O) any k any k 

Qtl~(q,k,1) no k 

Qt2)(q, k, 1) any k 

no k 

no k 

~q ~qh 

no k k > h  

any k k > h 

any k k ~ h 

any k k < h  

no k k < h  

no k k = h  

= 1 ,2 ,  3 and any k 

Q(3)(q,k,1) no k no k 

Q"~(q', k, O) z 

H(m) no m no m m = q h  m = l  

Our next lemma establishes the direct product formation as a tool for obtain- 
ing models for further basic sentences. The first part of it can be found as Theorem 
1.10, p. 219, in [8]; the rest is easily checked. 

LEMMA 3. (i) I f  9.I and 92' are models of Q(i)(q,k,n) and of Qti)(q,k,n') 
respectively, then 92 x 92' is a model of Q°)(q,k,n + n'). 
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(ii) I f  ~ is a q-model of Q(~)(q,k + 1,0) A Q(2)(q,k + 1,0) A ~ Qt3'(q,k,O), 
then 9i is a model of H(qk). 

(iii) I f  9.I and 9.[' are models of H(m) and H(m') respectively, then ~ x ~ '  
is a model of H(mm'/(m, m')). 

It hardly needs mentioning that, when we speak of models here, we always 
mean models that are Abelian groups. As a marginal case of (ii) the following 
should be noted:  

(ii') I f  gA is a q-model of Q°)(q,l,O)AQt2)q,l,O), then 9~ is a model of 
H(1), i.e., 9.[ = 3 .  
The next three lemmas finally are crucial for the decidability of ['B]. The gist 

of  the whole situation can be summarized as follows: Given any sentence 
of  I-B], then, either O is logically derivable from the set of  sentences listed in 
Lemma 1, or else a direct product of  finitely many q-models, which is a model 
of  ~ O, can effectively be constructed on the basis of Lemmas 2 and 3. 

LEMMA 4. I f  ~e[Qq], then either • is provable in AG or else ,,,t~ has a 
q-model. 

It is not difficult to show, using Lemmas 2 and 3 (i), that, unless • is a con- 
sequence (in the sense of propositional logic) of the sentences (i), (iii) and (iv) 
of  Lemma 1, ~ • has a q-model, say ~I~(~, n, r) (see also Theorem 1.12 of [8], 
p. 220). The decidability of [ Q~ I is an immediate consequence of this. For, again 
by Lemmas 1 (i), 2 and 3(i), we see that ~O~(~,n,r) is the unique q-model of the 
sentence 

~F(~,n, r) = Qtl*(q,l(r),(1-o~)n) A Q(2~(q,l(r),~n) A Ao<h<l(,)Q(3)(q,h,rh). 

Hence by Lemma 4, for any sentence • e I Qq ] : 
either • is provable in A G, or else ~, n, r can be found such that ~F(~, n, r) ~ ,.~ 

is provable in AG. 

The next three lemmas reduce the decision problem for the set I B I to its solu- 
tion for the sets I Qql" 

LEMMA 5. Let O= Vj<hO~, where and all the q / s  are distinct. 
If, for each j < h, ~ j  is a q:model of ,~ ~j,  then 

]-[i<h 9J~j is a model of N O. 

This ]emma is an immediate consequence of Lemma 2 row 8 and Lemma 30). 
Together with I.emma 4 it clearly yields a decision-procedure for all sentences 
of  ]B[ that do not contain any subformulas of the form H(m). For, as an ob- 
vious consequence of it we have 

• is provable in AG if and only if  at least one Oj is provable in AG. 
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LEMMA 6. Let • be as in Lemma 5, and let m = q~,.., qk:, where s =< h =< t, 
and all the primes qo ..... q, are distinct. Set O' = V~<hO'i, where 

O~" = ~j  V ~ Q°)(qj, l ,0) V ~ Q(Z)(qj,1,0) for j < s, and 

, (2) O~ = Oj V ~ Qtt)(qi,ki + 1,0) V ~ Q (qj, kj + 1,0) V Q°)(qj, kj,O)for 

for s<=j<h.  

If, for each j < h, ~ j  is a q j-model of ,., O'j, then 

l-'L<hffJlj × l-[h~_j~,~q#, is a model of .,. (¢~ V " H(m)). 

This lemma follows directly from Lemmas 2 (last row), 3(ii) and (iii). Together 
with Lemma 1(v) and (vi) we obtain from it: 

V "~ H(m) is provable in AG if and only ifO' is. 

Since O' is of the form considered in Lemma 5, and since obviously ~ H(m) 
is not provable, and ~ H(m)V ~ H(m'), for m # m', is provable, we again 
have the desired reduction. 

LEMMA 7. Let • and m be as in Lemma 6, let • = Vj<,H(mj), where all 
the m / s  are different from m, and let q be prime to all the q /s ,  j < h, and all 
the mrs,  j < n. Then 

(i) if ~ is any model of ~ O, then 9.I × ~ l  is a model of ~ (0  V u2), 
(ii) if 9~ is any model of ~ ( O V  ~H(m)) ,  then ~ is a model of 
(0  V ~ H(m) V ud). 
Parts (i) and (ii) of this lemma are trivial consequences of Lemmas l(v), 2 

and 3(i), and of Lemma 1 (ii) respectively. Clearly • is not provable in A G ( ~ o  
is a model of ~ tp), and from our lemma we conclude that: 

• V ~ is provable in AG if and only if • is, and 

• V "" H(m) V ~P is provable in AG if and only iJO V "" H(m) is. 

This closes our discussion of the decidability of [B] and gives us the tools 
we need. For further reference we state: 
(**) 7he set [B] is decidable in AG, i.e., the set of all those sentences of [B] 

which are provable in AG is recursive. 

We now proceed to construct a decidable theory T for which T; is undecidable. 
Let g be a recursive function on and into the set N,  such that its range R(g) is 
not recursive. We extend AG to a theory AG by adding to the axioms of AG 
the sequence of sentences A(n), n e N ,  where 

A(n) = [..~ Qtl)(p.+ 1,1,0) -~ Q°~(2,1, g(n))]. 

A(n) states that, if there is an element of order p~+l, then there are exactly 
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2 g(n)- 1 elements of order 2. The next two theorems show that the theory 
T = A G has the desired properties. 

THEOREM 1. Theory AG is decidable. 

Proof. Since, by (,), every sentence in the formalism of AG is effectively 
equivalent to a sentence of [B] in AG--and hence necessarily also in AG---it 
suffices to establish a procedure for deciding whether or not a sentence of [B] is 
provable in A G. This will clearly be achieved once we have shown how to cor- 
relate effectively with every sentence ® e [B] a natural number f(®),  such that 
O is provable in A G if and only if it is derivable in the decidable theory A G 
from the sentences A(0) .... ,A(f(O)). 

For every O e [B] we define f(O) as the largest number h such that some sub- 
formula of O either belongs to Q or is of the form H(mph- t). Then, 

(1) either O is provable in AG, or else O V ~ Q°)(q,l,0) is not provable for 

any prime q > Ps(o). 

For, if O is not provable in AG, then, according to Lcmmas 4-7, ~ O has a 
model ~ which is a direct product of pfmodels, for j < f (®) .  But, by Lcmma 2 
row 8 and Lemma 3(i), ~[rt is a model of Q°)(q,l,0) for any q > Ps(o). 

Now let O be any given sentence of [B] and assume that O is provable in 
A G. Then there is an n ~ N such that 

(2) A(0) A ... A A(n)~ ® is provable in AG. 

Assume that m is the smallest number n > f(O) for which (2) holds. Since 

A(m) = [~ Q°)(pm+ 1,1,0) -~ Q(1)(2,1,g(m))], 

Proposition (2) obviously implies 

(3) A(0) A ... A A(m - 1) A ~ O ~ ~ Q(1)(pm+t, 1,0) is provable in AG. 

Now suppose that m > f (O) .  Then we see by inspection that the negation of 
the hypothesis of the sentence in (3) is equivalent to a sentence O' of  [B] for 
which f (O ' )  = m. But then, by (1) and (3), O'  is provable and hence 

(4) A(0) A.. .  A A(m - 1) ~ O must be provable in A G. 

This however contradicts our assumptions concerning m. Therefore we have 
m = f(O),  and A(0) A...  A A(f(O)) ~ O must be provable in A G whenever O 
is provable in AG__ The implication in the opposite direction being obvious, we 
obtain: 

(5) a sentence O e [B] is provable in ~l G if and only if A(0) A...  A A(f(O)) ~ O 
is provable in A G. 
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Since, by ( . )  and (**) AG is decidable and f(®) is effectively correlated with O, 
(5) yielcL~ our theorem. 

TheOReM 2. Theory AG t is undecidable. 

Proo£ Consider the set of sentences B(n), n ~N,  where 

B(n) = [ (~  H(1) A '-' H(2) A Q(1)(2,2,0)) - '  ~ Q°)(2,1, n)]. 

Notice that hypothesis of  B(n) is equivalent to the sentence 

~x ~ (x 2 = 1) A Vx(x 4 = 1 -* x 2 ffi 1). 

We first establish the following: 

(1) if meR(g) ,  then B(m) is valid in AG:. 

In fact, let ~I be a finite model of A G satisfying the hypothesis of B(m). Then 
~I, being a finite Abelian group, must have an element of  odd order and hence 
an element of order p.+ j for some n e N, so that ¢~(1)t .~ ~ ~,p.÷l,l,0) is valid in 9J. 
But then, since ~I is a model of A--G and therefore in particular of the axiom A(n), 

(1) the sentence Q (2,1,g(n)) must be valid in ~I. By m ~ R(g) we have m ~ g(n), 
and therefore the conclusion of B(m) holds in ~I. Hence B(m) holds in every 
finite model of A (7 and is thus valid in A G s. In turn we show: 

(2) if m e R(g), then B(m) is not valid in A G s . 

Indeed, let m = g(n) and set ~I = (Ep.+ 11 x ~2a~ "~. Then, by Lemmas 2 and 3, 
~I is a model of/1(7,, in which the hypothesis of B(m) holds while the con- 
clusion fails. Hence B(m) is not valid in A G s. From (1) and (2) we conclude 
that B(m) is valid in A---G: if and only if m belongs to the complement of R(g) 
with respect to N. But we have chosen g such that this complement is not recur- 
sive, and therefore theory A G: is undecidable. 

Along the pattern of our example, decidable theories T with undecidable T/ 
can be constructed at will, always using a recursive function g whose range is not 
recursive. For instance, we can take for T the extension of A G obtained by ad- 
joining any one of the sequences A'(n), A'(n), A"(n), n e N, where 

A'(n) = [Q°)(2,1, n) ~ Q(3)(3,1,g(n))], 

A'(n) = [Q~'1)(2,1, n + 1) --* H(2g(n))], 

A"(n) = [H(2(n + 1)) ~ Q(1)(2,1, g(n))]. 

We can also choose as bases for our constructions theories simpler than AG, 
e.g., the theory E of a single equivalence relation; we then take for Tthe extension 
of E by the sentences C(n) expressing the fact that, if there are exactly n one- 
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element equivalence classes, then there are exactly g(n) 2-element classes. One 
of the simplest constructions is obtained by starting with a theory in which the 
only non-logical constants are two unary predicates, say P and Q, and the only 
axiom is Vx (P(x) ~ ,,, Q(x)); to construct T we adjoin as axioms all the sentences 
3"xP(x)~ 3~q~")xQ(x), n ~N.  Finally it should be observed that if we allow 
theories with infinitely many non-logical constants the matter becomes still simpler. 
For, let R be a binary recursive relation for which the set of all m such that tuRn 
holds for every n is not recursive, and let T(R) be the elementary theory with the 
infinite set of sentential constants Pk, k e N,  based upon the axioms A(m, n) where 

A(m,n) = [3"+Xx(x = x)~P,,]  in case tuRn holds, 

A(m,n) = [3"+lx(x = x ) ~  ~ P,,] in ease tuRn does not hold. 

Then T(R) is clearly decidable while (T(R))f is clearly undecidable. Notice, by 
the way, that every theory T which is finitely axiomatizable or decidable and 
for which T$ is undecidable induces in a natural way a decidable theory of the 
type T(R) with undecidable (T(R)) s. 

However, in spite of the existence of such very simple examples, it may be of 
some interest that decidable extensions of the theory of Abelian groups can be 
found for which the theories of finite models are undecidable. 

It should be observed that the success of our method rests heavily on the fact 
that we are working with infinite axiomatizations. The problem whether there 
are finitely aximatizable decidable theories T with undecidable T~r remains open. 

We now turn to our second task and show that there is an undecidable theory 
T for which the Theory T I of all finite models is decidable in a non-trivial way, 
i.e., in spite of having models with arbitrarily large number of elements. It turns 
out that such a T can be found among finitely axiomatizableltheories. In fact, 
we can take for T the elementary theory A S of Abelian cancellation semigroups 
with (or without) unit. The symbolism of AS coincides with that of AG; the 
axioms of AS are the commutative, associative, and cancellation laws, and the 
law expressing the idempotency of 1. 

THEOREM 3. The theory AS of Abelian cancellation semigroups is un- 
decidable. 

Proof. This theorem was established independently by Taiclin in [9] and 
by Tarski in [13]. For the convenience of the reader we present here Tarski's 
proof, which was indicated briefly in his abstract. 

We begin with the construction of a particular semigroup 6 ,  which is a sub- 
algebra of the multiplicative semigroup ~ of positive integers. To this end we 
define a binary operation © as follows: 

rn O n = 2"+1(2n + 1) for all m,n in N.  
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Furthermore we denote by R the binary relation which holds between m,n E tq 
if and only if, for some k e N ,  

2"(2k + 1) = n < 2~'(2k + 2) ; 

in other words, if and only if the (m + 1)-st digit from the right in the binary 
expansion of n is 1. Hence it is easily seen that the relation R between natural 
numbers is isomorphic to the membership relation between sets of finite rank, 
i.e., between sets belonging to the smallest family containing the empty set and 
closed under the operation of forming singletons and finite unions. For our 
purpose, however, it suffices to know that R satisfies the following two conditions: 

(1) there is an n E N (in fact n = 0) such that turn does not hold for any 
m e N ;  

(2) for all m , n ¢ N  there is a p e n  (namely n or n + 2 md e p e n d i n g o n  
whether mRn holds or not) such that, for every q ~ N, qRp holds if and only 
if q = m or qRn holds. 

We now define ~ as the semigroup of ~ generated by the set G consisting of 
all primes P2,+I, as well as all numbers pa,,+lpmon and 2 PEn+ lPmonfOr any m,n E N 
for which mRn holds. Let P be the set of all primes P2J~+ 1 and let E be the relation 
that holds between P2m+l and P2,+1 if and only if tuRn holds. In view of !(1) 
and (2) the definition of E implies: 

(1') there is an x ~ P  such that yEx does not hold for any y e P ;  

(2') for all x ,y  ~ P there is a z ~ P such that, for every u e P, uEz if and only 
if u = x or uEy. 

It can be shown without difficulty that G, P and E can be characterized in- 
trinsically within the semigroup ~ by means of the following conditions: 

(3) x e G if and only if x is an element of ~ different from 1 and, for all 
elements w and z of ~ ,  the formula x = w. z implies that ~ = 1 or z = 1, 

(4) x ~ P  if and only i f x e G  and xa.u =y2"v for some y , u , v e G ,  

(5) xEy if and only if x,y  e G and x a .u = y 2 . o  for some u,v ~ G. 
Let T(S) be the elementary theory of the semigroup ~ .  We shall show that 

this theory is hereditarily undecidable, i.e., that not only T(~ "~) but also every 
subtheory of T(~') with the same constants is undecidable. For this purpose we 
consider another formalized theory F which is a fragment of the theory of sets. 
F has one non-logical constant, the binary predicate E, denoting the member- 
ship relation, and is based upon the following two axioms: 

A = 3x Vy ~ g(y ,x ) ,  

B = Vx Vy 3z Vu ( e ( u ,  z)  ~ (u - x V ~ (u ,  y) ) ) .  
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It is known that: 
(6) Theory F is essentially undecidable t*) . 

Finally we form a third theory T by adding a unary predicate P and a binary 
predicate E to the non-logical constants of T(~), and by stipulating that a sen- 
tence be valid in T-and if only if it is derivable from the set of all valid sentences 
of T(~) together with the following two sentences: 

C = [P(x)*.~(G(x) A 3y 3u 3v(G(y) A G(u) A G(v) A x 3. u = y2.  v))], 

D = [E(x,y)c-~(G(x) A G(y) A Bu ~v(G(u) A G(v) A x a • u = y2 . v))], 

where G(x) is an abbreviation for the formula 

,-, ( x = l )  A V w V z ( x = w . z  ~ ( w = l A z = l ) ) .  

Since T(~) is obviously consistent, and C and D are respectively possible de- 
finitions of P and E, we have: 

(7) T is a consistent e~tension of T(~). 

From (1') and (2') we can conclude, because of (3)-(5), that the sentences 
A (p) and B (P), which are obtained by relativizing the axioms A and B of F to 
the predicate P (see [12] p. 24f.) are valid in T. Consequently 

(8) -T is an extension of F (p). 

By (7) and (8) we see that 

(9) F is relatively interpretable in T. 

From (6)-(9) follows that the finitely axiomatizable and essentially undecidable 
theory F is relatively weakly interpretable in T(~). Hence, applying Theorems 
8-10 of [12], pp. 23 ft. (of. in particular the remarks at the end of section 1.5 
p. 29 f.), we find that T(~) is indeed hereditarily undecidable. This immediately 
implies the undecidability of Theory A S  and thus completes the proof. 

This proof of Theorem 3 actually yields a stronger conclusion. Since the ele- 
mentary theory of a particular subsemigroup of the multiplicative semigroup 

of positive integers has been proven hereditarily undecidable, the elementary 
theory of the class of all subsemigroups of ~ is also hereditarily undecidable 
(see [13]). 

Finally we arrive at the decidability of the theory of finite Abelian semigroups 
by exhibiting an axiomatization for the theory of finite Abelian groups. 

(4) The fact that Theory F with an additional axiom, the law of extensionality for E, is 
e~soatially unde~idablo was stated without proof in [12] p. 34 as a joint result of Szmielvw and 
Tarski. Vaught in [15] p. 21 shows that the result can be improved by omitting the additional 
axiom. 
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TI-I~OR.~M 4. (i) The theory AGa. of finite Abelian groups coincides with 
the extension o/ AG obtained by adjoining all sentences D(q,k,n), .[or any 
prime q,O < k e N, and n e N, where 

D(q,k,n) = [Q(l)(q,k,n) ~-+ Q(2~(q,k,n)]. 

(ii) The theory AS I of finite Abelian cancellation semigroups coincides 
with AG s and is decidable(S). 

Proof. (i) Let D be the set of all sentences D(q,k,n), let AGD be the extension 
obtained from A G by adjoining the sentences of  D, and let A Gp be the elementary 
theory of  periodic groups, i.e., of  Abelian groups in which one of  the sentences 
H(m) is valid (groups of  the first kind in the sense of  [8]). Then 

(1) AGD is a subtheory of  AGp, i.e., every sentence provable on AGD is valid 
in AGp. 
For,  from Lemma 1 (v) and (vi) follows that for every m and every q there is 
an h such that 

H(m) --* (QO)(q, h,0) A Q(2)(q, h,0)) 

is provable in AG. But, for any q, h, k, and n the sentence 

Q.fl)(q,h,O) A QtE'(q,h,O) -~ D(q,k,n) 

is derivable from the sentences listed in Lemma 1 (iii) and (iv). Therefore all 
the sentences of D are valid in every periodic Abelian group and hence in `4G r 
Furthermore, since every finite group is periodic, we obtain as an immediate 
consequence of  (1) 

(2) A G~ is a subtheory of AGf .  

To prove the converse, consider any sentence ® which is not provable in AGa, 
so that 

(3) ,-, O is compatible in ,4 G with D. 

We shall show by cases that 

(4) ,-, ® has a finite Abelian group as a model. 

Case (a): O e I Qq I for some fixed q. Now, if for some k and n, and fo r j  = I or 2, 
the sentence .~ Q(J)(q,k,n) is a disjunct of  0 ,  then 

(5) ~ ® is compatible in AG with Q(l)(q,k,n)A Qf2)(q,k,n); 

for, by our assumption (3), ,-, O is compatible with D(q,k,n). But then, by Lemma 

(5) The docidability of AG1 was ostablish~ independently by Error and by the author (using 
different methods of proof); see [2] and [3]. 
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4, the sentence ~ O A Q(l)(q,k,n) A QtU)(q,k,n) must have a q-model. Inspec- 
tion of Lemma 2, and Lemma 3 (i), however, show that a q-model of the sentence 
QO)(q, k, n) A Q(2)(q, k, n) cannot have any direct factors ~R~ or ~q (by definition 
a q-model never has both groups as factors) and hence is finite. Thus 

(6) ~ O has a finite q-model. 

Suppose, on the other hand, that no disjunct of O is of the form ~ Q(J)(q,h,n') 
f o r j  = 1 or 2, any positive integer h and any n' ~N .  Then let k - 1  be the largest 
positive integer h such that some subformula of O is of the form Q(°(q,h,n'), 
i = 1,2 or 3. Then, since, by assumption (3) and Lemma 4, ~ O has a q-model, 
there must be a k-termed sequence r of natural numbers such that 
O' = Ao<h<~Q(3)(q,h,rh) and ,,, O are compatible in AG. Now let n -  1 be 
the largest n'  e N  such that some subformula of (9 is of the formQ t~) (q, h,n'), 
i = 1, 2, or 3. Since, by assumption, ® does not have any disjuncts ~ Qt~)(q,h,n') 
with j = 1 or 2, we find, by Lemmas l(i), 2 and 3(i), that the finite group 
~0~(0,0,r) x Cq~ is a model of (9' A ~ ® whence (6) (and (5)too) is established 
again. Hence (4) holds in case (a). 

Case (b): (9 = • = ~/j<h¢j where the ¢~'s are as in Lemma 5. Then, by (3), 
each sentence ~ ~ is compatible in A G with D. Hence, by case (a), each sentence 
~ ~ has a finite qfmodel ,  and this, by Lemma 5, implies (4). 

Case (c): Let (9 = oh V "~ H(m) .  where • and m are as in Lemma 6, and let 
oh' too be as in Lemma 6. Then, since by Lemma 1 (v) and (vi) the sen- 
tence ~ ®--+ ,-, ~ '  is provable in A G, we find that, because of  (3), ,~ ~ '  is 
compatible in AG with D. Thus, by case (b), ,~ ~ '  has a finite model, the direct 
product of which with another finite model as in Lemma 6 is, by Lemma 6, a model 
of ~ (9. And thus (4) proves to hold again. 

Case (d): (9 is an arbitrary sentence in I BI. By Lemma 7, this case reduces 
to the previous cases. 

Case (e): (9 is an arbitrary sentence in the formalism of A G. But then, (see (.)), 
(9 is equivalent in AG to a sentence of [B], i.e., to some sentence (9' which is 
a conjunction of some sentences (9) of [B]. By (3) and cases (a)-(d), at least 
one of the sentences ~ (9) must have a finite Abelian group as a model, and this 
group will then, of course, also be a model of ,,, (9. 

We have thus shown that (3) always implies (4). Consequently every sentence 
that is valid in AG: is derivable in AG from D, i.e., 

(7) A G s is a subtheory of  AG o, 

and in view of (2) our proof of (i) is complete. 
As a byproduct of this proof we mention that, by (1) and (7), the elementary 

theories of periodic Abelian groups and oJ finite Abelian groups coincide. 
(ii) It is well known and easy to show that every finite cancellation semi-group 

is a group; hence AG s and AS s coincide. Furthermore, part (i) of our theorem 
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implies that the set of  sentences which are valid in AG: is recursively enumerable. 
On the other hand a sentence is not valid in A G: if and only if its negation has a 
finite model which is an Abelian group. Using the fact that A G is finitely axiom- 
atizable (or that it is decidable) we can effectively enumerate all finite Abelian 
groups. Thus, if a sentence ~ ® has a finite Abelian group as a model, it can 
effectively be found. Therefore the set of  all sentences in the formalism of  AG,  

which are not valid in AG¢, is also recursively enumerable. This completes the 

proof  of  part  (ii) of  our theorem.(6) 

We conclude with the remark that the extension A G :  obtained from A G  z by 

adjoining all the sentences A(n) would have served as well as A G  for an example 
of  a decidable theory whose theory of  finite models- -namely  A G : ( =  (AG: ) : ) - -  

is undecidable. 
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